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Abstract

This research focuses on numerically solving a class of computationally expen-

sive optimization problems that possesses a unique characteristic: as the optimal

solution is approached, the computational time required to compute an objective

function value decreases. This is motivated by an application in which each objec-

tive function evaluation requires both a numerical fluid dynamics simulation and an

image registration and comparison process. The goal is to find the parameters of a

predetermined image by comparing the flow dynamics from the numerical simulation

and the predetermined image through the image comparison process. The general-

ized pattern search and mesh adaptive direct search methods were applied in a way

that employs surrogate functions in the search step to reduce the number of costly

function evaluations. The surrogate functions are formed, based on either previous

function values or their computational times, or both. The solution to the surro-

gate optimization problem can be solved easily and provides an improved solution

quickly. A time cut-off parameter was also added to the objective function to allow

its termination during the comparison process if the computational time exceeds a

specified threshold. The approach was tested on two problems using the NOMADm

and DACE MATLABr software packages, and results are presented.
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SURROGATE STRATEGIES FOR COMPUTATIONALLY

EXPENSIVE OPTIMIZATION PROBLEMS WITH CPU-TIME

CORRELATED FUNCTIONS

1. Introduction

The optimization problem considered in this research is to evaluate,

min
x∈Ω

f(x), (1.1)

where f : Rn → R ∪ {±∞} is computationally-expensive, Ω = {x ∈ Rn : l ≤ x ≤ u}
and l, u ∈ (R∪{±∞})n for l < u. The objective function f will be treated as a “black

box” where f can contain different properties to include nonsmoothness, discontinu-

ity, unknown derivatives, and may fail to return a value for x ∈ Ω. Furthermore, the

objective function also possesses a unique property: the computational time required

to compute the objective function decreases as objective function values decrease.

1.1 Motivation

This class of problems is motivated by an application in which a single function

evaluation consists of a numerical simulation and image registration process. The

two processes estimate parameters of experimental data through the numerical sim-

ulation of fluid dynamics and then compare two images through a metric measuring

image registration. This chapter reviews these processes and reveals why the central

processing unit (CPU) time decreases as the solution is approached.
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1.1.1 Numerical Simulation of Fluid Dynamics

A numerical simulation involves several steps in an attempt to predict the

state of all points in space continuously throughout time. From the observation of a

process, a mathematical set of equations can be developed to describe the outcome

of the process. The equations can then be solved approximately at a finite number

of points, or discretized [17], at any given time. Furthermore, from these sets of

known equations one can compile sufficient information to forecast the outcome of

an unknown situation.

Fluids, both liquids and gases, are defined as substances that cannot resist

shear stress when at rest [17]. The movement of fluids in a given region Ω ⊂ Rn, n ∈
{2, 3} is governed by the well-known Navier-Stokes equations, which are comprised of

three equations, namely, momentum of the fluid (1.2), conservation of energy (1.3),

and continuity (1.4), given as follows (see Griebel et al. [17]):

∂

∂t
~u + (~u · ∇)~u +∇ p =

1

Re
∆~u + (1− βT )~g, (1.2)

∂T

∂t
+ ~u · ∇ T =

1

Re

1

Pr
∆T + q′′′, (1.3)

div ~u = 0, (1.4)

where ~u ∈ Rn is the velocity field, p ∈ R is the pressure in the region, ~g ∈ Rn

indicates body forces, Re ∈ R is the Reynolds number of the flow, Pr ∈ R is Prandtl

number of the flow, β ∈ R is the coefficient of thermal expansion, q′′′ is the heat

source, and T is the temperature.

The Navier-Stokes equations cannot be solved analytically. To solve numeri-

cally, both space and time are discretized, and a finite differences scheme is applied.

For a two-dimensional case, let ~x = (x
(k)
i,j , y

(k)
i,j ), ~u = (u

(k)
i,j , v

(k)
i,j ) and ~g = (gx, gy) where

i = 1, . . . , m and j = 1, . . . , m represent m2 spacial points in the region at iteration
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k. The time increment is denoted by δt, and x and y are spatially incremented by

δx and δy respectively. The Laplace operator is denoted by

4f =
d∑

i=1

∂2f

∂x2
i

.

Using central differences and first-order difference quotients, the discretization of

(1.2)–(1.4) yields the equations:

F
(k)
i,j = ui,j + δt

(
4ui,j

Re
−

[
∂(u2)

∂x

]

i,j

−
[
∂ (uv)

∂y

]

i,j

+ gx

)
(1.5)

G
(k)
i,j = vi,j + δt

(
4vi,j

Re

[
∂(uv)

∂x

]

i,j

−
[
∂(v2)

∂y

]

i,j

+ gy

)
(1.6)

F̃
(k)
i,j = F

(k)
i,j − β

δt

2

(
T

(n+1)
i,j + T

(n+1)
(i+1),j

)
gx (1.7)

G̃
(k)
i,j = G

(k)
i,j − β

δt

2

(
T

(n+1)
i,j + T

(n+1)
i,(j+1)

)
gy (1.8)

u
(k+1)
i,j = F̃

(k)
i,j −

δt

δx

(
p

(k+1)
(i+1),j − p

(k+1)
i,j

)
(1.9)

v
(k+1)
i,j = G̃

(k)
i,j −

δt

δy

(
p

(k+1)
i,(j+1) − p

(k+1)
i,j

)
(1.10)

[
∂T

∂t

](n+1)

i,j

+

[
∂(uT )

∂x

]n

i,j

+

[
∂(vT )

∂y

]n

i,j

=
1

Re

1

Pr

([
∂2T

∂x2

]n

i,j

+

[
∂2T

∂y2

]n

i,j

)
+ q′′′i,j (1.11)

p
(k+1)
(i+1),j − 2p

(k+1)
i,j + p

(k+1)
(i−1),j

(δx)2
+

p
(k+1)
i,(j+1) − 2p

(k+1)
i,j + p

(k+1)
i,(j−1)

(δy)2

=
1

δt

(
F

(k)
i,j − F

(k)
(i−1),j

δx
+

G
(k)
i,j −G

(k)
i,(j−1)

δy

)
(1.12)
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Equations (1.11)–(1.12) lead to a numerical algorithm for simulating fluid flow

under different settings. The time step is chosen consistent with Griebel et al. [17]

δt = τ min

(
Re

2

(
1

δx2
+

1

δy2

)−1

,
P rRe

2

(
1

δx2
+

1

δy2

)−1

,
δx

|umax|
,

δy

|vmax|

)
(1.13)

where τ ∈ [0, 1] to maintain stability and prevent oscillations. The resulting nu-

merical algorithm can be seen in Figure 1.1, followed by Figure 1.2 representing

different flow properties extrapolated from the algorithm under certain parameters

and conditions.

1.1.2 Image Registration and Comparison

Image registration is the transformation of an image into a related image [24],

while image comparison is a measurement of the transformation to determine the

level of similarity between images [6]. Modersitzki [24] shows different types of

geometric transformations possible, to include both parametric and non-parametric

image registration. Consider the inner product space of squared Lebesque-integrable

functions,

L2(Ω) = {f : Ω → R|
∫

Ω

|f(x)|2dx < ∞},

with the inner product 〈· , ·〉 defined by

〈f, g〉L2(Ω) =

∫

Ω

f(x)g(x)dx, (1.14)

and consider the transformation of an image T,

Tu(x) = T (x− u(x)),

1-4



• INITIALIZATION: Let t = 0, k = 0, choose δt according to (1.13), and assign
initial values to tend, u, v, p, T .
• WHILE t < tend

Compute T
(k+1)
i,j according to (1.11).

Compute F
(k)
i,j and G

(k)
i,j according to (1.5) and (1.6).

Compute F̃
(k)
i,j and G̃

(k)
i,j according to (1.7) and (1.8).

Solve simultaneously p
(k+1)
i,j according to (1.12) for all i, j.

Compute u
(k+1)
i,j and v

(k+1)
i,j according to (1.9) and (1.10).

t = t + δt
k = k + 1

Figure 1.1 Numerical Simulation Algorithm
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Figure 1.2 Numerical Simulation Image

1-5



where u(x) is the displacement of the point x. The objective is to minimize the dis-

tance between a reference image R and a template image T through an optimal warp

transformation Tu, as defined by some distance measurement D, and a smoothing

or regularizing term S. This problem is given by

min
u

D[R, Tu] + αS[u], (1.15)

where α > 0, and

D[R, Tu] = f(x, u(x)) (1.16)

S[u] = A[u](x), (1.17)

for a force measurement f and partial differential operator A. The distance mea-

surement uses a force f to warp T into R, creating the image warp transformation

Tu. The regularizing term is added to the objective function to differentiate between

possible transformations, since the minimum distance may not be unique and one

type of transformation may be preferred over another. Applying the Euler-Lagrange

equations to (1.15)–(1.17) yields the system of nonlinear differential equations,

A[u](x) − f(x, u(x)) = 0,

from which the iteration scheme,

A[uk+1](x) − f(x, uk(x)) = 0, (1.18)
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is constructed. In particular, the following choices for D, S and A are used consis-

tently with Modersitzki [24],

D[R, Tu] =
1

2
‖Tu −R‖L2(Ω)

S[u] =
1

2

d∑

l=1

∫

Ω

(4ul)
2dx

A[u] = 42u,

where ‖ · ‖L2(Ω) is the norm induced by (1.14). From Asaki [6], the iterative scheme

constructed by (1.18), the optimal warp found can then be measured to compare the

level of similarity between the reference image and template images dependant on

the warp transformation.

Figure 1.3 shows an example of an image registration of two different simulated

flows of heat for a fluid. The top left picture is the reference image R for a given

set of parameter values, the top right is the template image T for a different set of

parameter values, the bottom left is the warped template image Tu, and the bottom

right is the difference between the reference image and the warped template image.

1.1.3 Objective Function

The goal is to find the parameters of a predetermined image among a range

of choices from a numerical simulation. The objective function (1.1) accounts for

both the numerical simulation and the numerical image registration and compari-

son methods described above through the following process. The objective function

uses certain input parameters (e.g., Reynolds number) in the numerical simulation,

resulting in an image that can be compared to a predetermined image. Based on

the simulation and the predetermined image, the results of (1.15) enable the deter-

mination of the difference between the two images. Each possible image from the

numerical simulation results in a distance value (??). The smallest distance value

1-7
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implies that the parameter set for the numerical simulation match those of the pre-

determined image. For the numerical scheme presented for image registration (1.18),

if the images are very similar, only a few iterations are necessary to transform the

template image into the reference image resulting in a small distance value. If the

images are farther apart, more iterations are necessary, which would increase the

computational time and distance value. From the numerical scheme and distance

value output, a direct correlation exists between the objective function value and

the amount of computational time.

1.2 Purpose

The intent of this research is to develop an efficient strategy for numerically

solving the class of optimization problems in which function values are expensive

to evaluate, but become less so as a solution is approached. The method utilizes

a less expensive surrogate function and a direct search method to find the optimal

parameter values. A surrogate function can be thought of as a replacement for f

that exhibits similar behavior. Surrogates are typically used when a function f is

computationally expensive to evaluate. The nonlinear optimization problem will

be solved by means of a direct search method, which does not rely on derivative

information.

1.3 Overview

Chapter 2 outlines relevant literature on surrogates and direct search methods

while Chapter 3 develops an approach using both methods. Chapter 4 describes the

application of the method on two test problems and their results. Chapter 5 finishes

this research with conclusions and recommendations for future research.

1-9



2. Relevant Literature

This chapter reviews literature related to the method developed to solve

the optimizations problem (1.1). The first section introduces surrogate functions,

their composition, and possible implementations. The next section examines pat-

tern search algorithms as a solution method for nonlinear optimization.

2.1 Surrogate Functions

The idea for surrogates first appeared in the work of Schmit and Miura [29],

who refer to surrogates as “approximation concepts.” Booker, et al. [13] characterize

a class of problems for which surrogate functions would be an appropriate approach,

suggest a surrogate composition, and set forth a general framework, called the Sur-

rogate Management Framework (SMF), for using surrogates to solve optimization

problems numerically. Most surrogates are one of two types: simplified physics or

response-based.

2.1.1 Simplified Physics: Low-Fidelity

A simplified physics model, also known as a low-fidelity model, makes certain

physical assumptions that allow for a reduction in the computational cost but with

less accuracy in the solution and parameter values. The assumptions not only re-

duce the computational cost through estimating or eliminating complex equations,

but may also reduce the number of variables. These models are typically problem-

dependent since they are based on specific characteristics of the problem.

Robinson et al. [26], take an approach for using a low-fidelity model as a

surrogate through two transformations. For x ∈ Rn, x̃ ∈ Rñ, ñ ≤ n, let g(x̃) be a low-

fidelity model for a computationally expensive function f(x). The surrogate ŷ(x) is

the composition of two transformations linking f(x) to g(x̃). The first transformation

must correct the surrogate to associate the difference between evaluations of f(x)

2-1



and g(x̃). The correction transformation can use an additive term (2.1) to update

the surrogate, i.e.,

A(x) = f(x)− g(x̃) ⇒ f(x) = g(x̃) + A(x). (2.1)

The term A(x) is approximated by α(x) using a second-order Taylor series around

a point xc,

α(x) = A(xc) +∇A(xc) +
1

2
(x− xc)

T∇2A(xc)(x− A(xc)) (2.2)

= [f(xc)− g(x̃c)] + [∇f(xc)−∇g(x̃c)]

+
1

2
(x− xc)

T [∇2f(xc)−∇2g(x̃c)](x− xc).

Then from (2.1),

ŷ(x) = g(x̃) + α(x) (2.3)

= g(x̃) + [f(xc)− g(x̃c)] + [∇f(xc)−∇g(x̃c)]

+
1

2
(x− xc)

T [∇2f(xc)−∇2g(x̃c)](x− xc).

The second transformation is a space mapping function P that handles the change

in variable dimensions (see Bandler et al. [11] for details). It is defined by

x̃ = P (x) (2.4)

such that

‖g(x̃)− f(x)‖ ≤ ε

2-2



where ‖ · ‖ is a suitable norm and ε > 0. Combining transformations (2.3) and (2.4),

the surrogate function becomes

ŷ(x) = g(P (x)) + α(x).

2.1.2 Response-Based Model: Design and Analysis of Computer Experiments (DACE)

A response-based model makes no assumptions on the physics involved and is

constructed from known responses of the function. For a model to be based on the

responses of the function, a basic structure of the surrogate must be assumed. Sacks

et al. [27] discuss a way to build a model using both a generalized least-squares

regression model and interpolation. In regression analysis, an output is treated as a

realization of a stochastic process, since for the same input parameters, a different

output value can occur. A computer experiment, however, has the same output value

for the same input parameters. Using the deterministic response of the computer

experiment, it is treated as if it is a realization of a stochastic process from which to

build a regression model. The variance associated with the generalized least squares

regression model is used to form a correlation matrix to interpolate the regression

model through the deterministic responses at known data sites. The generalized

least squares model can then act as a predictor of the response at an unknown point,

based on the known points and their known function values.

Following [27] and [22], the deterministic function ŷ(z) can be modeled as a

realization of a stochastic process Y (z), which is composed of a regression model

with coefficients β ∈ Rn and a random variable Z : Rn −→ R, namely,

Y (z) =
n∑

j=1

βjfj(z) + Z(z) = βT f(z) + Z(z). (2.5)
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The random function Z(·) is assumed to have a mean of zero and covariance

V (w, z) = σ2R(θ, w, z) (2.6)

between Z(w) and Z(z), where σ2 is the process variance and R(θ, w, z) is the cor-

relation between w and z.

Kriging produces an approximate function value at an unknown point using

weights on known responses. Given a set of known data points {xi}k
i=1 ⊂ Rn and

their response {yx}k
x=1 ⊂ Rm, a function value at an unknown point z ∈ Rn can be

approximated from

ŷ(z) = c(x)T yx (2.7)

where c(x) ∈ Rm is a vector of weights. The best kriging weights are obtained by

minimizing the mean squared error (MSE) between the true model (2.5) and the

approximate model (2.7), given by

MSE[ŷ(z)] = E[c(x)T yx − Y (z)]2

c(x)T yx − Y (z) = c(x)T (βT f(x) + Z(x))− (βT f(z) + Z(z))

= c(x)T Z(x)− Z(z) + (f(x)T c(x)− f(z))T β.

To ensure that the linear predictor is unbiased, the condition

f(x)T c(x)− f(z) = 0 (2.8)

must hold. In this case, it follows from (2.8) that

c(x)T yx − Y (z) = c(x)T Z(x)− Z(z),
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and

MSE[ŷ(z)] = E[c(x)T Z(x)− Z(z)]2

= E[Z(z)2 + c(x)T Z(x)Z(x)T c(x)− 2c(x)T Z(x)Z(z)]. (2.9)

From (2.6),

E[Z(z)] = σ2

E[Z(x)Z(z)] = V (x, z) = σ2R(θ, x, z)

E[Z(x)Z(x)T ] = V (x, x) = σ2R(θ, x, x),

which simplifies (2.9) to

MSE[ŷ(z)] = σ2 + σ2c(x)T R(θ, x, x)c(x)− 2σ2c(x)T R(θ, x, z). (2.10)

The optimal weights c(x) can be found by solving an optimization problem formu-

lated from (2.8) and (2.10), namely,

min
c

σ2(1 + c(x)T R(θ, x, x)c(x)− 2c(x)T R(θ, x, z))

s.t. f(x)T c(x)− f(z) = 0.

To solve this problem, the Lagrangian function L(c, λ), with multiplier λ ∈ R is

formulated, as

L(c, λ) = σ2(1 + c(x)T R(θ, x, x)c(x)− 2c(x)T R(θ, x, z))

−λT (f(x)T c(x)− f(z)).
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Taking the gradient with respect to c(x) and λ, the first-order necessary conditions

for optimality become

R(θ, x, x)c(x) + λ̃f(x) = R(θ, x, z), (2.11)

λ̃ = λ/2σ2,

f(x)T c(x) = f(z). (2.12)

Solving the system of equations in (2.11) and (2.12) yields

λ̃ = (f(x)T R(θ, x, x)−1f(x))−1(f(x)R(θ, x, x)−1R(θ, x, z)− f(z)) (2.13)

c(x) = R(θ, x, x)−1(R(θ, x, z)− f(x)λ̃). (2.14)

Substituting (2.13) and (2.14) into the predictor (2.7),

ŷ(z) = c(x)T yx

= R(θ, x, x)−1(R(θ, x, z)− f(x)λ̃)T yx

= R(θ, x, z)T R(θ, x, x)−1yx − (f(x)T R(θ, x, x)−1R(θ, x, z)− f(z))T

(f(x)T R(θ, x, x)−1f(x))−1f(x)T R(θ, x, x)−1yx

= f(z)T β∗ + R(θ, x, z)T γ∗, (2.15)

where

β∗ = (f(x)T R(θ, x, x)−1f(x))−1f(x)R(θ, x, x)−1yx, (2.16)

γ∗ = R(θ, x, x)−1(yx − f(x)β∗). (2.17)
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The correlation matrices in (2.15)–(2.17) are based on the distance between all

points and can be expressed as

R(θ, x, x) =




R(θ, x1, x1) R(θ, x1, x2) . . . R(θ, x1, xn)

R(θ, x2, x1) R(θ, x2, x2) . . . R(θ, x2, xn)
...

...
...
. . . . . .

R(θ, xn, x1) R(θ, xn, x2) . . . R(θ, xn, xn)




R(θ, x, z) =
(

R(θ, x1, z) R(θ, x2, z) . . . R(θ, xn, z)
)T

for known points xi ∈ Rn, i = 1 . . . k and unknown point, z ∈ Rn. Then R(θ, a, b)

can be specified as

R(θ, a, b) =
n∏

j=1

Rj(θj, |dj|) (2.18)

dj = aj − bj j = 1 . . . n

for any points a, b ∈ Rn. Many choices for the function Rj(θj, |dj|) have been pro-

posed to allow a user to determine the amount of influence that known points should

exert on an unknown point. Common choices include the following [22]:

Rj(θj, |dj|) = (2.19)

exponential : exp(−θj|dj|)
general exponential : exp(−θj|dj|θn+1) 0 < θn+1 ≤ 2

gaussian : exp(−θjd
2
j)

linear : max{0, 1− θj|dj|}
spherical : 1− 1.5ξj + 0.5ξ3

j ξj = min{1, θj|dj|}
cubic : 1− 3ξ2

j + 2ξ3
j ξj = min{1, θj|dj|}

spline : ς(ξj) ξj = θj|dj|
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ς(ξj) =





1− 15ξ2
j + 30ξ3

j , 0 ≤ ξj ≤ 0.2

1.25(1− ξj)
3, 0.2 < ξj < 1

0, 1 ≤ ξj.

The optimal choice for θ is the maximum likelihood estimator θ∗ that solves

min
θ
|R(θ, x, x)|1/mσ̂2, (2.20)

where

|R(θ, x, x)| = det(R)

σ̂2 =
1

m
(yx − f(x)β∗)T R(θ, x, x)−1(yx − f(x)β∗).

2.2 Generalized Pattern Search

Generalized Pattern Search (GPS) is a class of direct search methods that

generates a sequence of iterates with nonincreasing function values to numerically

solve optimization problems without utilizing derivative information. Torczon [30]

introduced pattern search for unconstrained optimization problems as a generaliza-

tion of several well-known methods, including the method of Hooke and Jeeves [18]

and the multidirectional search algorithm of Dennis and Torczon [16], and showed if

the objective function f is continuously differentiable and all iterates lie in a com-

pact set, then a subsequence of iterates converges to a first-order stationary point.

Lewis and Torczon later extended GPS to problems with simple bounds [19] and

linear constraints [20]. Audet and Dennis [7], developed a hierarchy of convergence

results for GPS that depends on the smoothness properties of f , while second-order

convergence behavior was studied by Abramson [3].

Further extensions include work to manage generally constrained optimization

and mixed variables. For nonlinearly constrained optimization, Audet and Dennis
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introduced a filter GPS method [9], while Lewis and Torczon use an augmented

Lagrangian approach [21], both of which allow infeasible points in the iteration

sequence. Audet and Dennis [8] also introduced a mixed variable GPS algorithm

for bounded constrained problems with continuous and categorical variables, which

was extended by Abramson [2] using filters for problems with nonlinear constraints

and mixed variables.

Audet and Dennis [7] describe GPS as a two step process in generating a

sequence of nonincreasing function values. At each iteration, GPS executes a search

and poll, which are executed on a mesh. The optional search step is very general

in that it simply evaluates a finite number of mesh points, and can be implemented

in a variety of ways. This allows the user to choose a specific heuristic suited for the

optimization problem. Common choices include the use of surrogates for expensive

objective functions or a random search of the region if nothing is known about the

objective function. The search step contributes nothing to the convergence theory,

but is often successful in aiding the algorithm find a quick improvement.

An example of a random search method is the Latin hypercube design which

consists of a random set of “space filling” points. This is done by dividing each of n

dimensions into m intervals of equal length, where m is the number of points desired.

This creates mn sectors for the given space. Random points within the m random

sectors are chosen such that each column for each dimension is chosen only once,

as described by Santner et al. [28]. On the region [0, 1] × [0, 1], Figure 2.1 shows

an example of m = 4 random points chosen on a two-dimensional Latin hypercube

design. From the 16 sectors, 4 random points are chosen so that no row or column

is repeated.

The search step continues until no further improvement in f can be found, at

which, point the poll step is invoked. Polling consists of an examination of the points
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Figure 2.1 Latin Hypercube Design (2-D, 4-Points)

Pk neighboring the current solution xk on a mesh Mk, which is defined by

Mk = {xk + ∆m
k Dz : z ∈ Z|D|+ } (2.21)

where ∆m
k is the mesh size and D is a set of positive spanning directions (defined by

Davis [15]). The set D must be constructed so that each direction dj ∈ D is required

to be the product Gzj for some fixed nonsingular generating matrix G ∈ Rn×n and

zj ∈ Zn.

The set of points on the mesh neighboring the current solution xk is called the

poll set and can be expressed as

Pk = {xk + ∆m
k d : d ∈ Dk}

where Dk ⊆ D is also a positive spanning set.

From the poll set, points are evaluated until an improvement in the objective

function is found or until all points in Pk have been evaluated. If an improvement is

found, the improved point becomes the new iterate and the mesh size can be relaxed
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according to the rule

∆m
k+1 = τwk∆m

k , (2.22)

where 0 < τwk < 1, for τ ∈ Q, wr ≤ −1 and wk ∈ [wr,−1] ∩ Z. If no improvement

is found, the current solution is retained and the mesh is tightened according to

∆m
k+1 = τwk∆m

k , (2.23)

where 0 < τwk < 1, for τ ∈ Q, wt ≥ 0 and wk ∈ [0, wt] ∩ Z.

2.2.1 Mesh Adaptive Directed Search

Mesh Adaptive Directed Search (MADS) was introduced by Audet and Dennis

[10] as a generalization of GPS that extends to nonlinear constraints without the use

of a penalty function or filter. The search step in MADS is the same as in GPS; the

difference lies within the poll step. MADS adopts the idea of a frame from Coope

and Price [14], which is the poll set in GPS, and generates an asymptotically dense

set of refining directions. The increased number of directions used by MADS leads

to a stronger convergence theory than that of GPS. Audet and Dennis [10] provided

convergence to a first-order stationary point for general nonlinearly constrained op-

timization problems, even in the nonsmooth case. Abramson [4] gives reasonable

conditions under which convergence to a local solution is ensured. In GPS, the mesh

size parameter ∆m
k dictates the direction and magnitude of the mesh are equal for

each positive spanning set. MADS overcomes this rule by introducing a poll size

parameter ∆p
k such that ∆m

k ≤ ∆p
k for updating ∆m

k for all k,

lim
k∈K

∆p
k = 0 ⇒ lim

k∈K
∆m

k = 0. (2.24)
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The updated poll set of frame becomes,

Pk = {xk + ∆m
k d : d ∈ Dk} (2.25)

where Dk is a positive spanning set such that each d ∈ Dk must have three properties

(see Audet and Dennis [10]): d can be written as a nonnegative integer combination

of the directions in D: d = Du for some vector u ∈ NnDk that may depend on the

iteration number k, ∆m
k ‖d‖ ≤ ∆p

k max{‖d′‖ : d′ ∈ D} and limits of the normalized

sets Dk are a positive spanning set, Audet and Dennis [10].

Figures 2.2 and 2.3 (from Audet and Dennis [10]) illustrate the difference be-

tween GPS and MADS frames. For GPS, ∆p
k = ∆m

k and for MADS, ∆p
k = n

√
∆m

k ,

n is the dimension. In Figure 2.2, the equal frame and mesh sizes limit the number

of directions GPS can investigate. Figure 2.3, however, demonstrates how MADS

allows polling in increasingly different directions and magnitudes as the mesh size

decreases faster than the poll size. This yields an algorithm similar to GPS, as seen

in Figure 2.4 [10].

2.3 Conclusion

This chapter reviewed the relevant literature and provided an introduction to

surrogates, as well as MADS, to solve an optimization problem. In the next chapter, a

method is developed using these ideas to numerically solve the optimization problem

(1.1).
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A GENERAL MADS ALGORITHM
• INITIALIZATION: Let x0 ∈ Ω, ∆m

0 ≤ ∆p
0, D, G, τ , wr, and wt satisfy the

requirements above. Set the iteration counter k ←− 0.
• SEARCH AND POLL: Perform the search and possibly the poll steps (or only
part of them) until an improvement mesh point xk+1 is found on the mesh, Mk

(See (2.21)).
OPTIONAL SEARCH: Evaluate fΩ on a finite subset of trial points on the
mesh, Mk.
LOCAL POLL: Evaluate fΩ on the from Pk. (See (2.25)).

• PARAMETER UPDATE: Update ∆m
k+1 according to (2.22) or (2.23) and ∆p

k+1

according to (2.24). Set k ←− k + 1 and go back to the SEARCH
AND POLL step.

Figure 2.4 MADS Algorithm
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3. Methodology

This chapter describes the approach for solving the optimization problem pre-

sented in Chapter 1 with the goal of solving the problem as quickly as possible. This

chapter outlines an arrangement between the use of surrogates within the application

of a pattern search algorithm.

3.1 Optimization Problem and Notation

The optimization problem from Chapter 1 is a computationally expensive,

black box function,

min
x∈Ω

f(x) (3.1)

for f : Rn → R ∪ {±∞}, Ω = {x ∈ Rn : l ≤ x ≤ u} and l, u ∈ (R ∪ {±∞})n for

l < u. The overall approach in solving (3.1) numerically is the implementation of

GPS or MADS with a barrier approach [10]. The application of the barrier forces

f(x) = ∞, whenever x /∈ Ω. To treat (3.1) when f is computationally expensive

and the CPU time required to evaluate f at a point x decreases as x approaches a

solution, a new notation is first introduced, in which the time to compute a function

value is added as part of the input and output; i.e., [z, t] = f(x, tcut), where x ∈ Ω

is a trial point, tcut is a user-specified CPU time threshold, z is the function value

at x and t is the computational time needed to compute z. Once the computational

time of a function evaluation exceeds the value specified by tcut, then evaluation of

f is aborted. This is done with the expectation that a lower objective value will not

be produced for the increased time required for the evaluation. Given the current

minimal solution ẑs at iteration n with a computational time of ts, let tcut = ts for

xn+1. The value for tcut can be changed after each iteration to help reach a solution

quickly.
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3.2 Search: Optimization Surrogate

The search step for a pattern search method also make use of the time feature.

From the points evaluated, the function values and times can be used individually as

responses, to form surrogates F (x) and T (x), respectively. The resulting surrogate

optimization problem is then solved cheaply at each search step to find a point at

which to evaluate f . The application of the two surrogates are tested in four different

configurations:

1. min
x∈Ω

F (x), (3.2)

2. min
x∈Ω

F (x) (3.3)

s.t. T (x) ≤ tcut + ε,

3. min
x∈Ω

T (x), (3.4)

4. min
x∈Ω

T (x) (3.5)

s.t. F (x) ≤ ẑs,

where the constant offset ε is added to the constraint in (3.3) to allow for variability in

computational time. The first surrogate is a typical application of using the function

values to construct the surrogates, while the second adds a constraint surrogate based

on time. The idea is to make sure the function surrogate and time surrogate both

see a decline in value for possible input values. The third and fourth configurations

switch the roles of the two surrogates with the same intent of finding a decline.

To solve the surrogate optimization problems presented, the same pattern

search method is applied. The method to solve the surrogate problem also uses

the barrier approach along with a nonlinear closed constraint in the case of (3.3) and
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(3.5). The nonlinear closed constraint is treated using the same barrier approach

described in Section 3.1. A function value of ∞ is assigned for all infeasible points.

The expectation is that an improved solution may be found quickly by solving the

surrogate problem, rather than spending the time in the poll step.

The combination of a pattern search method with a barrier approach and the

use of the parameter tcut in the original optimization problem causes a dilemma when

using surrogate functions. When the parameter tcut stops the evaluation of f at a

point x ∈ Ω, the function value is unavailable, and a value of ∞ is typically assigned.

However, when constructing a surrogate, a value of ∞ is not viable as a response.

Therefore, a different value is imposed when tcut is reached, for [zi, ti] = f(xi, tcut),

if ti = tcut then set zi = max{z1, . . . , zi−1}.

3.3 Surrogate Composition

For the surrogate problems developed in Section 3.2, DACE surrogates from

Section 2.1.2 were implemented, since the objective function (3.1) is treated as a black

box. The next subsections discuss the initial points used to generate the DACE sur-

rogates, the order of the regression polynomial, and the correlation function chosen

to model the responses.

3.3.1 Initial Points

A set of initial points must be evaluated and then used to generate a surrogate.

From a global perspective, a desirable property for the initial points is that they be

“space-filling”. The idea is to sample enough points in the given space to construct

a reasonably accurate initial surrogate. Santner et al. [28] discuss two main types

of space-filling techniques: experimental and Latin hypercube designs.

Latin hypercube designs were discussed in Section 2.2 as a possible step in the

GPS algorithm to generate a set of random points in a region. The points generated
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could then be used to construct the initial surrogate. However, when considering

the structure of DACE surrogates, the order of the regression model dictates more

than just random space-filling points.

In an experimental design approach, Myers and Montgomery [25] assert that

there are several characteristics to consider when choosing an initial set of points or

design. To minimize a DACE surrogate and obtain a proper estimate of ŷ(z) for the

unknown point z, a second-order polynomial,

ŷ(z) = βo +
k∑

i=1

βizi +
k∑

i=1

βiiz
2
i +

k∑
i=1

k∑
j<i

βijzizj + R(θ, x, z)T γ∗

is used where βij, i, j = 0, 1, . . . , k, γ∗, and R(θ, x, z) are defined in (2.16)–(2.18). A

second-order polynomial is chosen given Myers and Montgomery [25] state it as a

more accurate predictor of ŷ(z) than a polynomial of a lower order from. To properly

estimate the coefficients βij, i, j = 0, 1, . . . k, of the linear and quadratic terms, a

central composite design (CCD) is to determine for the initial set of points. Figure

3.1 is an illustration of a 2-dimensional CCD in which the axial and center points

allow for an estimation of quadratic coefficients, while the (±1,±1) points enable

approximation of the linear terms and two-factor interactions. Normally, a CCD

includes three replications at the center point, but this is not done here because there

is no randomness in the responses, and function evaluations are computationally

expensive.
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Figure 3.1 Central Composite Design (2-D)

3.3.2 Correlation Matrix

The choice of correlation function affects the performance of the algorithm. A

common choice is the Gaussian process given by

R(θ, a, b) =
n∏

j=1

Rj(θj, |dj|) (3.6)

Rj(θj, |dj|) = exp(−θjd
2
j)

dj = aj − bj

(3.7)

for any points a, b ∈ Rn. Lophaven et al. [22] have found that in practice, the

Gaussian process often shows the same behavior of the desired function as the number

of known points increases. However, when solving for R(θ, x, x)−1 (see (2.16) and

(2.17)), Booker [12] demonstrates that R(θ, x, x)−1 can become ill-conditioned as

points cluster together during the convergence process of a pattern search method.

The increase in the condition number, κ(R) of R(θ, x, x), results in a loss of significant

digits which can greatly impact the “optimal” θ found (see 2.20) or prevent the

calculation of β altogether. For specific values of θ and data sites, R(θ, x, x) is a
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symmetric matrix that can be factored via Cholesky decomposition:

R = CCT

and

κ(R) = κ(C)2 =
λ2

max(C)

λ2
min(C)

,

where λmax and λmin are the largest and smallest eigenvalues of C, respectively,

obtained from the diagonal of C. The condition number can be reviewed periodically

for different possible values of θ. If the condition number is too large the search

step is skipped and only polling is executed.

3.4 Implementation

The algorithm presented in Figure 3.2 incorporates the ideas developed in this

chapter to solve (3.1) efficiently. MADS–TIME executes a pattern search method

with surrogates based on function values and computational times with the addition

of a check on the surrogates condition numbers κ(R) and an updating scheme for

the time cut-off parameter using the current solutions ẑs computational time. The

algorithm will be applied to two test problems in the next chapter.
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• INITIALIZE
Given an initial set of points {xi}n

i=1, set tcut = ∞, evaluate [zi, ti] =
f(xi, tcut), i = 1, 2 . . . , n. Set k = n, s = 1, [ẑs, tcut] = [min{zi}k

i=1, ti],
and Ms satisfying (2.21) for given parameters ∆p

s, ∆m
s , D, τ and w. Set mesh

size stop criteria ∆stop and surrogate condition number threshold κ.
• SEARCH
For all known responses {xi, ti, zi}k

i=1, build surrogate optimization problem.
◦ If κ(R) > κ proceed to POLL.
◦ Else κ(R) ≤ κ, solve surrogate problem yielding xk+1, and evaluate

[zk+1, tk+1] = f(xk+1, tcut).
• If tk+1 = tcut, set zk+1 = max{zi}k

i=1, k = k + 1, proceed to POLL.
• Else tk+1 6= tcut.
◦ If zk+1 < ẑs an improvement has been found. Set k = k + 1, s =

s + 1, ẑs = zk, tcut = tk, update ∆m
s (2.22), ∆p

s (2.24), and return
to SEARCH.

◦ Else zk+1 ≥ ẑs and no improvement has been found, set k = k + 1,
proceed to POLL.

• POLL
◦ If zk+1 > ẑs ∀ xk+1 ∈ Ps Set s = s + 1, ẑs = ẑs−1 and update ∆m

s (2.23),
∆p

s (2.24), and proceed to CONVERGENCE.
◦ Else evaluate a point xk+1 ∈ Ps (2.25), [zk+1, tk+1] = f(xk+1, tcut).
• If tk+1 = tcut, set zk+1 = max{zi}k

i=1, k = k + 1, return to POLL.
• Else tk+1 6= tcut.
◦ If zk+1 < ẑs an improvement has been found. Set k = k + 1, s =

s + 1, ẑs = zk, tcut = tk, update ∆m
s (2.22), ∆p

s (2.24), and return
to SEARCH.

◦ Else zk+1 ≥ ẑs and no improvement has been found, set k = k + 1,
return to POLL.

• CONVERGENCE
◦ If ∆p

s < ∆stop, stop convergence criteria has been met.
◦ Else ∆p

s > ∆stop, return to SEARCH.

Figure 3.2 MADS–TIME
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4. Implementation

This chapter focuses on implementing the numerical algorithm presented in

Chapter 3 on a suite of test problems, and reporting numerical results. For each

scenario, different variations of the algorithm are applied and compared to a base

case. The base case implementation uses GPS with no search, a single initial point

or CCD set of points, and tcut = ∞. This allows for a full evaluation of all points and

a comparative analysis of the proposed algorithm. The other cases are the partial

and full implementation of the algorithm presented in Figure 3.2. Depending on the

solution and effectiveness of the algorithm presented in Figure 3.2, MADS may also

be implemented.

4.1 Processing and Coding

From Section 3.4, the algorithm presented was run on a Linux operating system

using two MATLABr software packages, NOMADm [4] for the implementation of

GPS and MADS algorithms and DACE [23] to build the surrogates, along with

custom search files. NOMADm requires five files to run the optimization problem,

four of which set up the parameters, objective function, variable bounds, and initial

points. The fifth file sets up a custom search for optimizing the surrogate problem.

The surrogate problem is solved by a recursive call to the NOMADm optimizer from

within the search step using four surrogate files. Each file can be seen in Appendix

A.

4.2 Test 1: Lid-Driven Cavity

The first test problem considered is known as the lid-driven cavity problem.

For a given two-dimensional square domain, the Navier-Stokes equations describe a

fluid flow with a horizontal velocity force on one edge. At time zero, the fluid is
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at rest. Once time starts, a constant horizontal velocity is asserted along the top

edge, causing a circular pattern of flow to appear within the fluid over time. For

different Reynolds numbers and simulation lengths, the velocity and viscosity of the

fluid form a different circular heat pattern throughout the region. At one particular

Reynolds number and simulation length, a reference image of the heat pattern is

captured and then noise is added into the image. The goal is to run a simulation for

different Reynolds numbers and simulation lengths, capture the template image, and

compare the template and reference images of heat in an attempt to determine the

original Reynolds number and simulation length set for the reference image. Figure

1.3 shows the reference image and a template image with their comparison.

4.2.1 Initial Runs

The base case of GPS with no search was applied and reached a solution,

but initial attempts using the MADS–TIME failed. After studying the problem

in detail, the reason for failure became evident. Figure 4.1 shows the relationship

between the function values at each trial point and the CPU time required to compute

it. From Figure 4.1, it is clear that the main assumption does not hold. The

computational time does decrease as the optimal solution is reached, but only below

a certain function value. If the function values are too far from that of the optimal

solution (i.e. too high), the computational time starts to decrease. Since the initial

point(s) produced function values above 200, tcut does not allow the computation of

a value between 25 and 200, leading the GPS algorithm to terminate as though the

optimal solution is around 200 without finding the true optimum. This situation was

remedied by changing the tcut parameter. Given a current minimal solution with its

computational time [zs, ts], let tcut = 2ts.

The preliminary runs of the surrogate optimization problem provided useful

information. However, as GPS progressed, the surrogate became ill-conditioned, due

to the clustering of trial points as the mesh size is reduced. Even though measures
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Figure 4.1 Test Problem 1: Function and Time Correlation

were in place to deter the possibility of ill-conditioning, it could not be prevented,

and the loss of significant digits was overwhelming. To combat this, a measure was

added to stop solving the surrogate problem once computational times fell below

some threshold or if the condition number was too high. This makes sense for this

class of problems, since the objective function evaluations are no longer expected to

be expensive.

4.2.2 Results-GPS

The results for each case are shown in Table 4.1. The first three are base cases

with no search step and tcut = ∞. The first has one initial point at the center of

the constraint region, the second chooses a random initial feasible point, and the

third generates a set of initial points from a CCD. The last seven cases are different

variations of the MADS–TIME algorithm. The first three are similar to the base

case (no search step) except for the use of the tcut parameter to abort expensive

function evaluations. The random point is the same random initial point that was
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Objective Reynolds Simulation Number of Number of Total CPU
Full Time Search Initial Point(s) Value Number Length Iterations Evaluations Time (min)

None Center 0.60 134.13 4.76 56.00 123.00 126.73
None Random 0.60 134.12 4.76 58.00 118.00 178.31
None CCD 0.60 134.13 4.76 40.00 107.00 196.58

Cut Time
None Center 0.60 134.13 4.76 80.00 157.00 257.67
None Random 0.60 134.12 4.76 92.00 162.00 796.40
None CCD 0.60 134.13 4.76 40.00 107.00 109.73
F(x) s.t. T(x) CCD 0.60 134.19 4.76 73.00 162.00 135.78
F(x) CCD 0.60 134.19 4.76 72.00 165.00 182.89
T(x) s.t. F(x) CCD 0.60 134.19 4.76 52.00 133.00 74.00
T(x)  CCD 0.60 134.19 4.76 49.00 127.00 74.48

Table 4.1 GPS: Lid-Driven Cavity Results

used for the base case. The final four employ one of the surrogate optimization

problems (3.2), (3.3), (3.4), or (3.5). For each implementation, certain information

was collected, including the optimal parameters found with the function value, the

number of iterations and function evaluations executed, and the overall time it took

to find the solution.

All runs found the optimal solution at the same parameter values. The quick-

est convergence occurred when the surrogate time function was minimized, subject

to a surrogate constraint based on function values (3.5). Closely behind is the surro-

gate time function with no constraint (3.4). Analysis of the runs provide interesting

insight and shows how each component of the proposed algorithm affected the com-

putational time.

Analysis of the first three runs (provided in Figure 4.1) yields the following

observations. The initial center point took more function evaluations than with a

random initial point, but the former took significantly less time. This illustrates the

importance of getting close to the solution quickly so that the time to evaluate the

objective function decreases quickly and why the number of function calls is not a

good measure of the effectiveness of the different implementations.

4-4



3

4

5

6

7

8

10 1010 2010 3010 4010 5010

Reynolds Number

S
im

u
la

ti
o

n
 L

en
g

th

Center-Full Time Center-Cut Time

Figure 4.2 Center Comparison

The results with no search demonstrate the importance of finding an appro-

priate initial point to set up the tcut parameter. With only one initial point, the

tcut parameter needs several iterations to build enough slack to allow the sequence

of points to overcome the phenomenon seen in Figure 4.1. The extra iterations re-

sult in a different path to a solution, which requires significantly more time. Figure

4.2 illustrates the differences for the two-dimensional case with simulation length

and Reynolds number as variables. The blue line representing the path, and blue

diamonds for a function evaluation with no tcut, and the red line and squares rep-

resent with tcut. So that there are 34 more function evaluations and the paths are

not the same when the tcut parameter was implemented. However, the results using

initial CCD points and no search shows an appropriate point for tcut, resulting in a

faster convergence. Both cases that use the CCD initial points take the same path

to the solution, but using the tcut parameter saves almost 90 minutes of time saved

compared to not using it.

Analysis of the search surrogates showed useful information was provided in

finding the optimal solution. The use of the constraint in both surrogate searches

provides an additional level of information to the search, leading to a different path
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Number of Search Number of Lower
Cut Time Search Initial Points  Surrogates Implemented  Objective Function Value

F(x) s.t. T(x) CCD 44 23 52.27%
F(x) CCD 34 15 44.12%
T(x) s.t. F(x) CCD 15 7 46.67%
T(x)  CCD 13 5 38.46%
Overall 106 50 47.17%

Percentage

Table 4.2 GPS: Search Surrogates Usage

and quicker convergence time. However, the different search surrogates also show

that quality is better than quantity. The search surrogate based on function values

with a time constraint (3.3) provided a lower objective function value more often

than the surrogate function based on time with a function value constraint (3.5),

but (3.5) converges about 60 minutes faster. Table 4.2 shows the ratio between the

number of times the surrogate was used and the number of times it resulted in a

point with a lower function value.

Figure 4.3 illustrates the quality in the decrease of the objective function. Each

color in Figure 4.3 represents a different search surrogate and each shape demon-

strates whether the poll or search step found the improved function value. The figure

shows that the surrogate objective function based on computational time provides a

lower function value quicker than the surrogate objective function based on function

values, leading to a faster convergence sequence.

4.3 Test 2: Barrier Flow

The second test problem applies the Navier-Stokes equations to a vertical flow

of fluid with a barrier near the top of the given two-dimensional region. At time

zero, the fluid is at rest. When time starts, an initial vertical force is applied to

the top of the fluid forcing a vertical downward reaction. The vertical force on the

fluid passes a horizontal barrier plane, causing the fluid to move around the barrier

and to sway horizontally after passing the barrier, while maintaining the downward
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Figure 4.4 Numerical Simulation of Fluid Barrier

reaction. Figure 4.4 illustrates this reaction. For different input parameters, the

fluid’s vertical and horizontal flow in the region demonstrates different states that

can be compared. For this problem, in addition to the two variables of Reynolds

number and simulation length, the Prandtl number and initial vertical velocity are

added as variables. The goal again is to determine the parameters of a reference

image.

4.3.1 Results–GPS

The results for each case are shown in Table 4.3. The runs were conducted

in a similar manner as the previous problem, but the results do not exhibit similar

behavior as seen in the previous test problem. The base case using a center initial
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Objective Initial Reynolds Prandtl Simulation Number of Number of Total CPU
Full Time Search Initial Point(s) Value Velocity Number Number Length Iterations Evaluations Time (min)

None Center 1074.07 1.88 140.00 0.16 76.00 32.00 160.00 540.13
None CCD 1310.82 1.56 140.00 0.16 72.00 22.00 155.00 476.00

Cut Time
None Center 1074.07 1.88 140.00 0.16 76.00 32.00 160.00 541.05
None CCD 1310.82 1.56 140.00 0.16 72.00 22.00 155.00 475.12
F(x) s.t. T(x) CCD 1310.82 1.56 140.00 0.16 72.00 22.00 170.00 529.86
F(x) CCD 1310.82 1.56 140.00 0.16 72.00 22.00 170.00 529.62
T(x) s.t. F(x) CCD 1222.01 1.56 175.56 0.16 87.88 42.00 254.00 778.11
T(x)  CCD 1121.07 2.00 154.86 0.20 100.00 26.00 170.00 538.85

Solution 0.00 1.00 160.00 0.10 40.00 - - -

Table 4.3 GPS: Barrier Flow Results

point discovered the lowest function value and took the least amount of time. None

of the evaluations found the optimal parameters.

Figure 4.5 illustrates a partial correlation between the function value and time

for the function evaluations using no search and tcut = ∞. It also illustrates the small

room for improvement in the overall computational time with image comparison

times between a fraction of a second to six seconds. A comparison of GPS with no

search shows that with a center initial point, tcut takes an additional 1 minute to

converge, but with a CCD set of initial points, tcut saves 1 minute. The variability in

computational time overcame any time saved by the tcut parameter. The variability

in the computational time can also be seen with the search surrogates using an

objective surrogate function based on function values with and without a constraint.

In these cases the search and poll steps evaluated the objective function at exactly

the same points during the runs, but the computational time was off by only 0.2

minutes.

The effectiveness of the surrogates in finding improved points is shown in Table

4.4. Only two points provided an improved function value and both used a surrogate

objective function based on time. The points led to a lower objective function value

than if they were not used, demonstrating the use of surrogate functions based on
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Figure 4.5 Test Problem 2: Function and Time Correlation

Number of Search Number of Lower
Cut Time Search Initial Points  Surrogates Implemented  Objective Function Value

F(x) s.t. T(x) CCD 16 0 0.00%
F(x) CCD 16 0 0.00%
T(x) s.t. F(x) CCD 15 1 6.67%
T(x)  CCD 16 1 6.25%
Overall 63 2 3.17%

Percentage

Table 4.4 GPS: Search Surrogate Usage

time may be more appropriate. Surrogate functions based on objective function

values never provided an improved point and thus merely wasted computational

time.

4.3.2 Results–MADS

Table 4.5 shows similar results using the MADS algorithm, which are no bet-

ter than those of GPS. The lowest objective function value was from the MADS

case which used function values for the objective surrogate with no constraint (3.2).

4-10



Objective Initial Reynolds Prandtl Simulation Number of Number of Total CPU
Full Time Search Initial Point(s) Value Velocity Number Number Length Iterations Evaluations Time (min)

None Center 1307.81 1.63 200.00 0.19 84.00 16.00 84.00 227.32
None CCD 1261.07 1.69 204.00 0.16 64.00 12.00 92.00 225.77

Cut Time
None Center 1307.81 1.63 200.00 0.19 84.00 16.00 84.00 228.08
None CCD 1261.07 1.69 204.00 0.16 64.00 12.00 96.00 226.11
F(x) s.t. T(x) CCD 1401.52 1.56 140.00 0.16 72.00 8.00 83.00 246.67
F(x) CCD 1219.01 1.56 174.00 0.14 72.19 12.00 112.00 330.50
T(x) s.t. F(x) CCD 1399.52 1.56 144.16 0.16 71.77 10.00 86.00 287.32
T(x)  CCD 1392.17 1.56 132.00 0.16 71.25 10.00 89.00 273.12

Solution 0.00 1.00 160.00 0.10 40.00 - - -

Table 4.5 MADS: Barrier Flow Results

Number of Search Number of Lower
Cut Time Search Initial Points  Surrogates Implemented  Objective Function Value

F(x) s.t. T(x) CCD 8 0 0.00%
F(x) CCD 12 0 0.00%
T(x) s.t. F(x) CCD 10 1 10.00%
T(x)  CCD 10 0 0.00%
Overall 40 1 2.50%

Percentage

Table 4.6 MADS: Search Surrogate Usage

Unfortunately, the random polling directions generated by MADS was the determin-

ing factor in finding an improved solution, instead of the surrogates. The random

polling directions for each MADS evaluation were set to a specific random seed, but

the recursive call of MADS during the surrogate optimization process prevented the

use of the same directions for each polling step. Table 4.6 shows that the only sur-

rogate to provide an improved function value at any time was the constrained time

surrogate (3.5), and it turned out to be of little benefit to the overall process. The

other surrogates were only different versions of MADS with a CCD set of initial set

of points and no search. The quicker convergence occurred because the mesh size

parameter is reduced at twice the rate of GPS, which is necessary for the MADS

convergence theory.
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Figure 4.6 GPS: Problem 2 Function Values

4.3.3 Results–Solution

The results of the barrier flow test problem using both GPS and MADS call

into question the effectiveness of the MADS–TIME algorithm. To investigate this

further, an additional run was made using the base case scenario, but started at the

solution. This allows for an evaluation of points neighboring the solution to analyze

the fluctuations in the function values and computational time.

Figure 4.6 illustrates how impractical it is to find the optimal solution to this

problem. As the mesh size decreases, the function values dynamically increase even

though the neighboring points are approaching the solution. This trend leads the

algorithm away from the optimal solution. Figure 4.7 illustrates that the image

registration times do not follow the same pattern. As the iterations continue, the

image registration times become less dynamic.
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Figure 4.7 GPS: Problem 2 Time

4.4 Review

The algorithm presented in Chapter 3 was applied to two test problems with

mixed results. The first problem was successfully solved while the second was not

solved. The second problem ,however, turned out to be an extremely difficult prob-

lem. Chapter 5 concludes with comments on solving nonlinear optimization problems

and suggestions for future work on the implementation of the algorithm.
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5. Conclusions and Future Research

The research in this thesis provides an initial investigation in solving a opti-

mization problems in which the objective function values and computational times

correlated. Further study into the solution and parameters established can lead to

improvement in the application of the algorithm. This chapter offers some concluding

remarks and suggests some potential areas of future research.

5.1 Conclusion

The two problems studied in Chapter 4 show an underlying complexity in non-

linear optimization; surrogates and pattern search methods are highly influenced by

the behavior, or fluctuations, in the objective function. The test problems possessed

the function value and time correlation, but only to a point (see Figures 4.1 and

4.5). The effectiveness of the algorithm on two test problems demonstrates mixed

results.

The implementation of the tcut parameter was a useful way to reduce the time

to solve the optimization problem. The first test problem showed that this parameter

can hinder the performance if the time assumption does not hold, but saves time if

the time assumption does hold. The amount of time saved appears to be determined

by the problem’s time property. The majority of the time required to execute the

objective function for the first problem is used by the image comparison algorithm,

but for the second problem, the fluid simulation time contains the majority of the

computational time. While tcut can be used to stop the image comparison algorithm,

it cannot stop the numerical simulation, since the image comparison requires the

image obtained from the full simulation.

Dynamic volatility and fluctuations in the nonlinear objective function can

greatly impact pattern search methods, not allowing the optimal solution to be

found. Surrogate functions were implemented in the search step to help lead the
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iterative process quickly to a region containing the optimal solution. However, with

dynamic fluctuations, surrogate functions require more points in strategically located

positions to effectively mimic the behavior of the objective function. The first test

problem does not contain too many fluctuations, since the optimal solution was

found by GPS with and without the different search surrogates. The time function

seems less dynamic and generates a quicker path to the region containing the optimal

solution, with or without the function value surrogate constraint.

The second problem does not seem to have the same simple behavior. For

GPS and MADS, the surrogate objective function based on function values never

provides an improved function value. The surrogates based on time did provide im-

proved function values, and a study of the iteration sequence shows evidence that the

objective function value and time surrogate functions can lead the iteration sequence

in completely different paths. While the surrogate constraint based on time rarely

impedes the iteration sequence to solve the surrogate based on function values, the

opposite cannot be implied. That is for both GPS and MADS, the surrogate con-

straint based on objective function values frequently restricts the directions available

to the surrogate based on time. The implementation of the two surrogates in dif-

ferent variations questions which value, objective function values or computational

time, can better represent the true behavior of the objective so that quicker progress

can be achieved toward the optimal solution. The main reason for using one surro-

gate over the other should be based on whether or not the fluctuations are expected

to be less for one output than the other, while still correctly mimicking the behavior

of the true objective function. The surrogate based on the less dynamic output has

a better chance of correctly identifying a better point. A poor surrogate objective

function fails to generate good trial points, while a poor surrogate constraint may

hinder the adequate exploration of the domain.
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5.2 Future Research

The merging of different methods to synthesize a new technique for solving this

class of problems has provided new areas of research. Different parameter settings

and modifications to the algorithm could provide a better solution in less computa-

tional time. Simple changes, such as solving all the proposed surrogate optimization

problems, (3.2)–(3.5), in the search step could lead to quicker convergence. Each

choice for the algorithm was made based on the current literature, but due to the

unique application, the most effective parameter may have not been used.

The parameter tcut provided an effective and efficient method to reduce the time

required to find a solution. This parameter is controlled by the user and the approach

used in this thesis was simple and based on trial and error. An enhancement to the

algorithm can be made by developing a more systematic was of using this parameter

to overcome or detect deficiencies illustrated in Figure 4.1 to minimize the time

to solve the optimization problem. Since function values and computational times

are stored in order to construct surrogates, they can also be used to measure the

correlation.

The DACE surrogates implemented had many choices, including the degree of

the polynomial, initial points, and the correlation function. These choices led to a

surrogate yielding varied results. A higher degree polynomial may have improved

the effectiveness of the surrogate, but the degree of the polynomial dictates how

may initial points are needed and the number of evaluations to solve the surrogate,

both of which take time to evaluate. A balance between the number of the initial

points evaluated and the degree of the polynomial may be reached through different

experimental designs such as a face center cube or Plackett-Burman (see Myers and

Montgomery [25]).

The choice of a Gaussian correlation function R(θj, |dj|) to determine the

amount of influence between known and unknown points was chosen based on recom-
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mendations from the literature, but one of the other choices may be more appropriate

for this class of problems. Particular choices of the correlation function, such as the

exponential function, have a high influence factor on an unknown point based on

known points and may enhance the DACE surrogate’s ability to imitate the desired

behavior.

Not using the surrogates when ill-conditioning, occurs as a result of the cluster-

ing of points during the pattern search method was a simple tactic. However, a more

effective means to combat this problem may be the use of a trust region in which

the search for an improved point is limited to a subregion, Ω̂ ∈ Ω. A framework

for using trust regions for search approximation models can be seen in the work of

Alexandrov et al. [5]. Similar to this approach is the idea of limiting the number of

points used to generate the DACE surrogate to a trust region based on the frame

size ∆p
k or mesh size ∆m

k . A relationship between the number of points within a

region and the distance between the points would dictate the size the trust region.

These two factors are considered because the number of points affects the desire in

mimic the true function and the distance between points creates the ill-conditioning

for R(θ, x, x)−1 (see Section 3.3.2). Eliminating points extremely far apart through

the use of the trust region would ease the ill-conditioning.

Including a trust region or different parameter settings could potentially im-

prove performance for this class of problems, but it could also be applied to problems

with the opposite behavior; i.e. when the computational time increases as the opti-

mal solution is approached. Implementations such as this, or research into different

parameters, may possibly lead to great strides in solving these types of CPU-time

correlated functions.

5-4



Bibliography

1. Abramson, M.A. “NOMADm optimization software”.
http://www.afit.edu/en/ENC/Faculty/MAbramson/NOMADm.html. 2007.

2. Abramson, M. A. Pattern Search Algorithms for Mixed Variable General Con-
strained Optimization Problems. Ph.D. thesis, Department of Computational
and Applied Mathematics, Rice University, August 2002.

3. Abramson, M. A. “Second-order behavior of pattern search”. SIAM Journal on
Optimization, 16(2):315–330, 2005.

4. Abramson, M. A. “Second-order convergence of mesh adaptive direct search”.
SIAM Journal on Optimization, 17(2):606–619, 2006.

5. Alexandrov, N., J. E. Dennis, Jr., R. M. Lewis, V. Torczon. “A Trust Region
Framework for Managing the Use of Approximation Models in Optimization”
NASA/CR 201745 ICASE Report No 97-50, 1997.

6. Asaki, T. “Elasticity-Based TSWarp Cost Functions” Los Alamos National Lab-
oratory Report, 2004.

7. Audet, C. and J. E. Dennis, Jr. “Analysis of Generalized Pattern Searches”.
SIAM Journal on Optimization, 13(3):889–903, 2003.

8. Audet, C. and J. E. Dennis, Jr. “Pattern Search Algorithms for Mixed Variable
Programming”. SIAM Journal on Optimization, 11(3):573-594, 2000.

9. Audet, C. and J. E. Dennis, Jr. “A Pattern Search Filter Method for Nonlinear
Programming without Derivatives”. SIAM Journal on Optimization, 14(4):980-
1010, 2004.

10. Audet, C. and J. E. Dennis, Jr. “Mesh Adaptive Direct Search Algorithms
for Constrained Optimization”. SIAM Journal on Optimization, 17(2):188–217,
2004.

11. Bandler, J. W., Q. Cheng, S. Dakroury, A. S. Mohamed, M.H. Bakr, K. Madsen,
J. Søndergaard. “Space Mapping: The State of The Art”. IEEE Transactions
on Microwave Theory and Techniques, 52(1): 337–361, 2004.

12. Booker, A.J. “Well-Conditioned Kriging Models for Optimization of Computer
Simulations”. Technical Report, M&CT-TECH-00-002, The Boeing Company,
2000.

13. Booker, A.J., J.E. Dennis, Jr, P.D. Frank, D.B. Serafini, V. Torczon, and M.W.
Trosset. “A Rigorous Framework for Optimization of Expensive Functions by
Surrogates”. Structural Optimization, 17(1): 1–13, 1998.

BIB-1



14. Coope, I. D. and C. J. Price. “On the convergence of grid-based methods for
unconstrained optimization”. SIAM Journal on Optimization 11(4): 859–869,
2001

15. Davis, C. “Theory of Positive Linear Dependence”. American Journal of Math-
ematics, 76(4): 733–746, 1954

16. Dennis, Jr., J. E. and V. Torczon. “Direct Search Methods on parallel machines”.
SIAM Journal Optimization, 1 448–474, 1991.

17. Griebel, M., T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in Fluid
Dynamics: a practical introduction. SIAM, 1998

18. Hooke, R. and T. A. Jeeves. “Direct Search Solution of Numerical and Statistical
Problems”. Journal of the Association for Computing Machinery, 8(2):212229,
1961.

19. Lewis, R. M. and V. Torczon. “Pattern Search Methods for bounded constrained
minimization”. SIAM Journal on Optimization, 9(4):1082–1099, 1999.

20. Lewis, R. M. and V. Torczon. “Pattern Search Methods for Linearly Constrained
Minimization”. SIAM Journal on Optimization, 10(3):917-941, 2000.

21. Lewis, R. M. and V. Torczon. “A globally convergent augmented Lagrangian
Pattern search algorithm for optimization with general constraints and simple
bounds”. SIAM Journal on Optimization, 12(4):1075–1089, 2002.

22. Lophaven, S.N., H.B. Nielsen, and J. Søndergaard. “Aspects of the MATLAB
Toolbox DACE”. Report IMM-REP-2002-13, Informatics and Mathematical
Modelling, Danish Technical University, 2002.

23. Lophaven, S. N., Nielsen, H. B., and J. Søndergaard. “DACE Surrogate Models”.
http://www2.imm.dtu.dk hbn/dace.

24. Modersitzki, J. Numerical Methods for Image Registration, Oxford University
Press, 2004.

25. Myers, R. H., and D. C. Montgomery. Response Surface Methodology. John
Wiley and Son, New York, NY, 2002.

26. Robinson, T. D., Eldred, M. S., Willcox, K. E., R. Haimes Strategies for Multifi-
delity Optimization with Variable Dimernsional Hierarchical Models Proceedings
of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference (2nd AIAA Multidisciplinary Design Optimization
Specialist Conference), Newport, Rhode Island, May, 2006.

27. Sacks, J., W. J. Welch , T. J. Mitchell and H. P. Wynn. “Design and Analysis
of Computer Experiments”. Statistical Science, 4(4):409–435, 1998.

28. Santner, T. J., B. J. Williams, and W. I. Notz. The Design and Analysis of
Computer Experiments. Springer-Verlag, New York, NY, 2003.

BIB-2



29. Schmit Jr., L. A., and H. Miura. “Approximation concepts for efficient structural
synthesis”. Technical Report CR-2552, NASA, 1976.

30. Torczon, V. “On the Convergence of Pattern Search Algorithms”. SIAM Journal
on Optimization, 7(1):125, 1997.

BIB-3



Appendix A. Appendix 1

The following Appendix contains MATLABr code for executing the MADS–TIME

algorithm (3.2). The files work in conjunction with the NOMADm [4] and DACE

[23] software packages.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OPTIMIZATION PROBLEM: Parameter File setup for fi xed and recorded  
% variables  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables:  
%  Param  
%   .count          : Iterate Number  
%   .sear           : Number of Times the Search Su rrogate is used  
%   .nosear         : Number of Times the Search Su rrogate is not used  
%   .data           : Fixed Parameter Input  
%   .x              : Variable Parameter Input  
%   .tc             : Time Cut Off Marker  
%   .LB             : Parameter Lower Bound  
%   .UB             : Parameter Upper Bound  
%   .thetaint       : Initial Theta estimate  
%   .reg            : Degree of regression polynomi al for surrogates  
%   .corr           : Correlation matrix for surrog ates  
%   .stop           : Time Threshold  
%   .kon            : Condition Number  
%   .konnum         : Condition Number Threshold  
%   .f              : Output Function Value  
%   .twarp          : Output Time Value  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  Param = cpuproblem_Param  
 
% Initialize Data  
Param.count=0;  
Param.sear=0;  
Param.nosear=0;  
Param.data=struct2cell(load( 'refimage0.mat' ));  
Param.x=0;  
Param.tc=Inf;  
Param.LB = [];  
Param.UB = [];  
Param.f=0;  
Param.twarp=0;  
Param.cfd=0;  
Param.stop=0;  
Param.konnum=10000;  
Param.kon=0;  
Param.thetaint=10*ones(1,length([Param.LB]));  
Param.reg=@regpoly2;  
Param.corr=@corrgauss;  
   
setappdata(0, 'PARAM' ,Param);  
return  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OPTIMIZATION PROBLEM: Objective Function File  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables:  
%  x                : Variable Parameter Input  
%  fx               : Output Function Value  
%  tx               : Output Time Value  
%  f_max            : Largest Function Value  
%  Param             
%   .count          : Iterate Number  
%   .data           : Fixed Parameter Input  
%   .x              : Variable Parameter Input  
%   .tc             : Time Cut Off Marker  
%   .f              : Output Function Value  
%   .twarp          : Output Time Value  
%   .f_min          : Current Lowest Function Value  
%   .go             : Current Time of Lowest Functi on Value  
%   .initial        : Number of Initial Points  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  [fx] = cpuproblem(x)  
Param = getappdata(0, 'PARAM' );  
Param.count=Param.count+1;  
  
% Setup Time Cut Off Marker if all initial points a lready evaluated  
if  Param.count>Param.initial  
    [f_min,call]=min(Param.f(1:(Param.count-1)));  
    Param.go=(Param.twarp(call));  
    Param.tc=2*Param.go+.1;  
    f_max=max(Param.f(1:Param.initial));  
end  
  
% User Supplied Objective Function  
[fx,tx]=costfunc(Param.data,Param.tc,x);  
  
% Negative Time Value is  
if  tx < 0  
    fx=f_max;  
    tx.warp=Param.tc;  
end  
  
% Record Necessary Information and Store  
Param.f(Param.count)=fx;  
Param.x(Param.count)=x;  
Param.twarp(Param.count)=tx;  
Param.fmin(Param.count)=f_min; 
 
setappdata(0, 'PARAM' ,Param);  
return  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OPTIMIZATION PROBLEM: Initial Points File  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables:  
%  Param  
%   .LB             : Parameter Lower Bound  
%   .UB             : Parameter Upper Bound  
%   .initial        : Number of Initial Points  
%  iterate          : List of Initial Points  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  iterate = cpuproblem_x0  
Param = getappdata(0, 'PARAM' );  
  
% Central Composite Design for n Dimensions  
[n,m]=size(Param.LB);  
W=zeros(1,n);  
X=sqrt(n)*eye(n);  
Y=-sqrt(n)*eye(n);  
  
Z=[-1 -1; 1 -1; -1 1; 1 1 ];  
for  k=1:n-2  
    Z=[Z,ones(size(Z,1),1)*-1;Z,ones(size(Z,1),1)];  
end  
DOE=[W;X;Y;Z];  
  
% Normailze Data to Upper and Lower Bounds of Probl em 
[a,b]=size(DOE);  
for  j=1:a  
    for  k=1:n  
        iterate(j).x(k,1)=((Param.UB(k,1)-
Param.LB(k,1))/(2*sqrt(n)))*((DOE(j,k)+sqrt(n)))+Pa ram.LB(k,1);  
        iterate(j).p={};  
    end  
end  
Param.initial=length([iterate.x]);  
 
setappdata(0, 'PARAM' ,Param);  
return 
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OPTIMIZATION PROBLEM: Bounds File  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables:  
%  n                : Problem Dimension  
%  Param  
%   .LB             : Parameter Lower Bound  
%   .UB             : Parameter Upper Bound  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function  [A,l,u] = cpuproblem_Omega(n)  
Param = getappdata(0, 'PARAM' );  
  
A = eye(n);  
l = Param.LB;  
u = Param.UB;  
return  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SEARCH SURROGATE: MADS Search Surrogate File  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables:  
%  Problem          : Input Parameters Required for  MADS  
%  Options          : Input Parameters Required for  MADS 
%  Param  
%   .sear           : Number of Times the Search Su rrogate is used  
%   .nosear         : Number of Times the Search Su rrogate is not used  
%   .go             : Current Time of Lowest Functi on Value  
%   .stop           : Time Threshold  
%   .kon            : Condition Number  
%   .konnum         : Condition Number Threshold  
%   .thetaint       : Current Surrogate Theta Solut ion  
%  pcenter          : Current Solution Variables  
%  BestF            : Solution to Search Surrogate  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  S = searchsurrogate(pcenter);  
Param = getappdata(0, 'PARAM' );  
  
% If the Solution Time and Condition Number are wit hin Thresholds,  
% execute Search Surrogate  
  
if  (Param.go>Param.stop) && (Param.kon<Param.konnum)  
    Param.sear=Param.sear+1;  
  
    Defaults = mads_defaults( 'Surrogate' );  
    Options  = Defaults.Options;  
    Problem.nameCache   = 'SCACHE' ;  
    Problem.typeProblem = 'STRUTH' ;  
    Problem.File.F = 'mysearch' ;                
    Problem.File.O = 'mysearch_Omega' ;          
    Problem.File.X = 'mysearch_X' ;              
    Problem.File.I = 'mysearch_x0' ;             
    Problem.File.N = 'mysearch_N' ;              
    Problem.File.P = 'mysearch_Param' ;          
    Problem.File.C = 'mysearch_Cache.mat' ;      
    Problem.File.S = 'mysearch_Session.mat' ;    
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    Problem.File.H = 'mysearch_History.txt' ;    
    Problem.File.D = 'mysearch_Debug.txt' ;      
    Problem.fType  = 'M' ;                      
    Problem.nc     = 0;   
                       
    % Specify Choices for SEARCH  
    Options.nSearches          =0;  
    Options.pollStrategy    = 'Standard_2n' ;  
    Options.pollOrder       = 'Consecutive' ;  
    Options.pollCenter      = 0;             
    Options.pollComplete    = 0;             
    Options.NPollComplete   = 0;             
    Options.EPollComplete   = 0;             
  
    % Specify Termination Criteria  
    Options.Term.delta      = 1e-4;          
    Options.Term.nIter      = Inf;           
    Options.Term.nFunc      = 50000;         
    Options.Term.time       = Inf;           
    Options.Term.nFails     = Inf;           
  
    % Choices for Mesh Control  
    Options.delta0          = 0.1;           
    Options.deltaMax        = Inf;           
    Options.meshRefine      = 0.5;           
    Options.meshCoarsen     = 2.0;           
  
    % Choices for Filter management  
    Options.hmin            = 1e-8;           
    Options.hmax            = 1.0;            

 
    % MADS flag parameter values  
    Options.loadCache        = 1;             
    Options.countCache       = 1;             
    Options.runStochastic    = 0;             
    Options.scale            = 2;             
    Options.useFilter        = 1;             
    Options.degeneracyScheme = 'random' ;      
    Options.removeRedundancy = 1;             
    Options.computeGrad      = 0;             
    Options.saveHistory      = 0;             
    Options.plotHistory      = 0;             
    Options.plotFilter       = 0;             
    Options.plotColor        = 'k' ;           
    Options.debug            = 3;             
    Options.Sur.Term.delta   = 0.01;          
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    % Create DACE Surrogates  
    [midthetaint,minkon] = mysearch_Param;  
    Param.thetaint=midthetaint;  
    Param.kon=minkon;  
  
    iterate0.x = pcenter.x;  
    iterate0.p={};  
  
    % Execute MADS to Solve Search Surrogate  
    [BestF,BestI,RunStats,RunSet] = mads(Problem,it erate0,Options);  
      
    S.x=BestF.x;  
    S.p={};  
else  
    S.x=pcenter.x;  
    S.p={};  
    Param.nosear=Param.nosear+1;  
end  
  
setappdata(0, 'PARAM' ,Param);  
return  
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SEARCH SURROGATE: Create DACE Surrogates  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables:  
%  kon              : Condition Number  
%  Param  
%   .x              : Variable Parameter Input  
%   .f              : Output Function Value  
%   .twarp          : Output Time Value  
%   .LB             : Parameter Lower Bound  
%   .UB             : Parameter Upper Bound  
%   .thetaint       : Initial Theta estimate  
%   .reg            : Degree of regression polynomi al for surrogates  
%   .corr           : Correlation matrix for surrog ates  
%   .kon            : Condition Number  
%   .theta          : Initial Theta estimate  
%   .lob            : Theta Lower Bound  
%   .upb            : Theta Upper Bound  
%   .dmodelF        : DACE Function Value Surrogate  
%   .dmodelT        : DACE Time Value Surrogate  
%       .C          : Cholesky Decomposition  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  [midthetaint,minkon] = mysearch_Param  
Param = getappdata(0, 'PARAM' );  
kon=0;  
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% Determine Lower Bound on Theta  
while  kon < 10e3  
    [dmodel]=dacefit(Param.x, Param.f, Param.reg, P aram.corr, 
Param.thetaint);  
    kon= condest(dmodel.C);  
    Param.thetaint=Param.thetaint/2;  
end 
theta0=Param.thetaint;  
Param.lob=2*theta0;  
  
% Determine Lower Bound on Theta  
dLnorm = inf;  
h = 0.1;  
while  dLnorm > 1e-2  
    theta1=theta0+h*ones(1,length(theta0));     
    dmodel0=dacefit(Param.x,Param.f,Param.reg, Para m.corr, theta0);  
    dmodel1=dacefit(Param.x,Param.f,Param.reg, Para m.corr, theta1);  
    C0=dmodel0.C;  
    R0=C0*C0';  
    R1=dmodel1.C*dmodel1.C';  
    dR = (R1 - R0)./h;  
    G=dmodel0.gamma';  
    S=dmodel0.sigma2;  
    dL=(G'*dR*G)/(2*S)-trace(C0'\(C0\dR));  
    dLnorm = norm(dL);  
    theta0=2*theta0;  
end  
Param.upb=theta0/2;  
Param.theta = (Param.lob+Param.upb)./2;  
  
% Compute DACE models for Function Value and Time  
[Param.dmodelF]=dacefit(Param.x,Param.f,Param.reg,P aram.corr,Param.thet
a,Param.lob,Param.upb);  
[Param.dmodelT]=dacefit(Param.x,Param.twarp,Param.r eg,Param.corr,Param.
theta,Param.lob,Param.upb);  
midthetaint=Param.dmodelF.theta;  
  
% Compute the Condition Numbers of the Surrogates  
kon1= condest(Param.dmodelF.C);  
kon2= condest(Param.dmodelT.C);  
minkon=min(kon1,kon2);  
  
setappdata(0, 'PARAM' ,Param);  
return 
 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SEARCH SURROGATE: Surrogate Objective Function Fi le  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Variables:  
%  x                : Surrogate Variable Parameter Input  
%  F                : Surrogate Output Function Val ue 
%  Param             
%   .dmodelF        : DACE Function Value Surrogate  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function  F=mysearch(x)  
Param = getappdata(0, 'PARAM' );  
  
% Evaluate DACE Surrogate for Variable  
[F]=predictor(x,Param.dmodelF);  
  
setappdata(0, 'PARAM' ,Param);  
return 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SEARCH SURROGATE: Surrogate Constraint File  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables:  
%  x                : Surrogate Variable Parameter Input  
%  T                : Surrogate Constraint Output F unction Value  
%  Param             
%   .dmodelT        : DACE Time Value Surrogate  
%   .go             : Current Time of Lowest Functi on Value  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  isfeasible=mysearch_X(x)  
Param = getappdata(0, 'PARAM' );  
  
% Evaluate DACE Surrogate for Variable  
T=predictor(x,Param.dmodelT);  
  
% Determine if point meets constraint  
if  T <= Param.go*2+.1  
    isfeasible=1;  
else  
    isfeasible=0;  
end  
  
setappdata(0, 'PARAM' ,Param);  
return  
  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SEARCH SURROGATE: Surrogate Bounds File  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Variables:  
%  n                : Problem Dimension  
%  Param  
%   .LB             : Parameter Lower Bound  
%   .UB             : Parameter Upper Bound  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [A,l,u] = mysearch_Omega(n)  
Param = getappdata(0, 'PARAM' );  
  
A = eye(n);  
l = Param.LB;  
u = Param.UB;  
  
return  
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